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Abstract 

Traditionally, modeling investment and dispatch problems in electricity economics has been limited by 
computation power. Due to this limitation, simplifications are applied. One common practice, for 
example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The 
increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this 
assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly 
volatile residual demand to be matched by the conventional power market. 

This paper quantifies differences in investment decisions by applying three different time-resolution 
residual load patterns in an investment and dispatch power system model. The model optimizes 
investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 
and 16 time slices per year.  The market under consideration is the four zone ERCOT market in Texas.  

The results show that investment decisions significantly differ across the three scenarios. In 
particular, investments into base-load technologies are substantially reduced in the high resolution 
scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. 
Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy 
differences.  
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1 Introduction and Motivation 

Adding a high share of variable wind power to an existing power system changes the optimal 

operation of the remaining power plants and therefore also the investment calculus for new generation 

capacity. With low, near-zero variable costs, wind power plants are usually the first generating units 

that are dispatched in the power system. It is therefore common to subtract wind generation from total 

demand to form the time-varying residual demand that the remaining generation units must be 

dispatched to meet. Because of these dynamics, wholesale power prices tend to be lower in hours with 

high wind power generation because the lower residual demand can be met by cheaper marginal units 

(Sensfuß et al., 2008; Munksgaard and Morthorst, 2008; Traber and Kemfert, 2010 ; Green and 

Vasilakos, 2010). The altered dispatch patterns and wholesale power prices, however, also impact the 

investment calculus of new power plants as demand rises or existing units retire, and those new 

investment impacts further influence dispatch and pricing results (e.g. Dena, 2005). 

Deriving an economic value of wind power to a power system based solely on the static perspective of 

a dispatch model or empirical data is therefore not sufficient. The dynamic adaptation processes in 

which new power plant investment decisions are also considered is critical in accurately simulating the 

impact of wind on the power system. A valid way to accurately capture the value of wind power is 

therefore to compare a power system without wind power and consequently without the adaptation 

effects due to wind power with a system that adapts to the wind power penetration through appropriate 

investment decisions.  

Despite the interrelationship between short-term dispatch results and longer-term investment 

decisions, modeling the combined impact of both effects has proven challenging. Two general 

research streams exist in the literature: the first uses high-temporal resolution dispatch models to 

capture the short-term price effects due to the variability of wind power, whereas the second uses 

capacity-expansion investment models to illustrate the longer-term adaptation processes of the 

remaining power system. To try to capture longer-term investment effects, dispatch models sometimes 

use power plant portfolios that are generated from an investment model (see e.g. Green and Vasilakos, 

2010), but in other cases impacts on investment decisions are ignored (e.g. Sensfuß et al., 2008).  



Some studies have sought to explicitly combine dispatch and investment optimization decisions into a 

single modeling framework in order to more-accurately capture the benefits and impacts of wind 

power on the power system (Neuhoff et al., 2008; NREL, 2008; Dena, 2005). Due to the high 

computational demands of accurately modeling the combined dispatch and investment optimization 

problem, however, a reduction in model complexity is usually required. One typical way to do this is 

to reduce the temporal resolution of the modeling framework; for example, rather than dispatching the 

system on an hourly basis over entire years, instead selecting a smaller number of broader time slices 

to evaluate.  

Reducing temporal resolution in this manner may be appropriate in systems without high penetrations 

of variable generation because, for example, every workday evening within a season may have a 

relatively typical demand pattern that does not deviate inordinately from one day to the next. Adding 

significant quantities of variable generation, however, can change the residual load substantially on an 

hourly basis. In order to capture these effects, either a model with a higher temporal resolution is 

required or the addition of correction factors may be needed to try to approximate the correct result. 

To date, however, little research has been published on the impact of model-based temporal resolution 

on modeling results in instances with high levels of wind penetration.  

To explore the impact of temporal resolution on dispatch and capacity expansion results, a model that 

can account for both hourly dispatch and long-term capacity expansion has been constructed. In this 

article, the results of the model under three different time resolutions are computed. The high-

resolution case has 8760 h per year, allowing for hourly dispatch decisions to be considered when 

determining optimal capacity expansion and other results. The medium-resolution case evaluates 288 

h during the year, reflecting typical days by season as has been used in dena (2005). The low 

resolution case has just 16 broad time slices,1 which follows the approach used by NREL’s ReEDS 

model as used to evaluate a high penetration wind scenario for the U.S. (NREL, 2008), but without the 

                                                           
1 The 288 h resolution case assumes typical patterns for workdays, Saturdays and Sundays within each season 
and therefore averages e.g. the third Wednesday per month each season to create a “typical” workday. The 16 
time slice approach averages similar load situations per season in a broader approach, e.g. all night hours within 
one season. 
 



correction terms utilized by ReEDS.2 In all instances, the model results presented here loosely 

simulate the power system in Texas, home to the largest wind power market in the United States.  

The aim of this article is to broadly evaluate the influence of model-based temporal resolution on the 

impacts of high penetrations of wind energy on the power system, and not to specifically evaluate any 

individual pre-existing models. By learning more about how temporal resolution impacts results, it is 

hoped that models might be improved, either by increasing temporal resolution or – where modeling 

complexity does not allow increased resolution – by adding correction factors to try to approximate 

the true impacts of wind energy on power systems. A better understanding of the impacts of wind on 

the power market might also assist climate modelers to take these factors into account when evaluating 

alternative approaches to reducing global carbon emissions using models that, because of their 

geographic and sectoral scope, are unable apply high time resolutions (e.g. IPCC, 2007). Even where 

model changes are not possible, the results that follow may at least provide an indication of how 

“inaccurate” low-temporal-resolution models might be in simulating the impacts of high penetrations 

of wind energy.  

In order to capture the temporal resolution effects, two specific scenarios (with the three temporal 

resolution cases of 8760 h, 288 h, and 16 time slice) are presented in the pages that follow. The first 

scenario contains no additional wind power deployment after 2008, and the model is run under all 

three temporal resolutions. The second scenario adds a substantial quantity of additional wind 

generation to demonstrate how that expanded penetration of wind energy impacts investment decisions 

and dispatch results relative to the first scenario, again under all three temporal resolutions. By this 

approach, first the temporal resolution effects can be analyzed and second, the particular wind energy 

integration challenges can be analyzed under different temporal resolutions. 

The remainder of this article is structured as follows. The second section describes the structure of the 

model used in the present study:  “The High temporal resolution Electricity-market Analysis-model” 

                                                           
2 ReEDS seeks to capture these effects by using one additional “superpeak” time slice to account for the peak 
reserve requirement and a “curtailment factor” to more-accurately estimate curtailment. The accuracy of these 
corrections is not addressed in the present study. 

 



(THEA). The third section lists the key assumptions and summarizes important results from the model, 

while also discussing the observed effects of temporal resolution on model results. Finally the fourth 

section concludes with an overview on the factors that need to be taken into account when high wind 

penetration cases are modeled.  

 

2 Methodology 

THEA is a linear optimization dispatch and investment model. The hourly dispatch is enabled by the 

implementation of a decomposition technique. Investment decisions are computed in 5-year steps until 

2070. Because of the end-time issues of investments with a long lifetime, results are only considered 

until 2030. The capacity mix is determined by investment decisions, which themselves are impacted 

by the dispatch part of the model, which provides information on efficient capacity adaptations in 

form of duals of the capacity restriction in an iterative algorithm that will be explained below. The 

hourly dispatch considers fuel-type fleet investments in order to keep the problem linear (i.e., the 

model considers all CCGTs within one vintage class as a single unit, and therefore does not evaluate 

distinct individual plants). The age structure of the existing fleet is mirrored by vintage classes, which 

take technology developments into account (e.g. efficiency). The coal fleet has six different vintage 

classes, the CCGT fleet four, the OCGT fleet three and the nuclear fleet two. Existing hydro power 

capacities are also included, but new investments are not possible due to the natural resource 

restrictions. THEA optimizes the energy exchange between different price zones, which are restricted 

by exogenous net transfer capacity (NTC) parameters. The dynamic temporal approach of consecutive 

hours considers start-up costs and part-load inefficiencies. In order to account for some electricity 

market restrictions, positive and negative reserve market requirements are implemented. Flexibility is 

added to the power balance between demand and supply by an option to curtail wind power in case of 

oversupply. 

To allow efficient solutions to the dispatch and capacity expansion problem in such a high temporal 

resolution, an approach that was first presented by Bender (1962), and is known as “Benders 



Decomposition”, is implemented. Based on the duality theory, large mathematical problems can be 

decomposed into smaller problems by fixing the complicating variable and optimizing it through an 

iterative algorithm that converges when an optimal solution is reached. Côte and Laughton (1979) 

presented an initial application of Benders decomposition to power system optimization and proved its 

advantages for a simple investment and operation problem in terms of memory requirements and 

solution times. The approach has been further applied for stochastic and integer programming 

applications, while the challenge of utilizing the approach for “real world” power systems has been 

summarized by Wang et al. (1996): “Methods of Benders’ decomposition are somewhat complicated, 

and their application may be computationally impossible for large power systems”. Fortunately, the 

latter concerns have subsequently been addressed by the recent trend towards high-performance-

computing (HPC), thereby overcoming computational challenges. To the knowledge of the authors, 

THEA is the first application of Benders’ Decomposition that utilizes a dynamic approach by 

computing investment decisions in five-year steps rather than as one single investment decision for the 

year under observation, while also making those decisions on the basis of full dispatch years with a 

maximum of 8760 hours each. In order to enable the computation of this complex problem, THEA 

adds one additional tool from recent HPC developments: dispatch is calculated in a monthly 

decomposed parallel mode. The advantage of this latter approach is that while a global model utilizes 

only one processor core, THEA uses all available cores of the modeling server. In other words, 

depending on the amount of the available cores of the modeling server, up to 132 months of the eleven 

considered investment years could be computed simultaneously (for the purpose of the results 

presented in the present paper 16 cores have been used).  

 



Fig. 1: THEA Model Structure

Source: Own illustration. 
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reserve requirements, there is no possibility that the algorithm can converge after only one dispatch 

run. Since the algorithm does not converge in the third step, in the fourth step, the full MP receives the 

dispatch costs as well as the capacity duals. The so called Benders’ cut then calculates the change in 

the capacity mix that leads to a lower cost solution on the basis of the capacity duals, which are 

calculated in the SP and passed on to the MP. In every iteration, one additional Benders’ cut is added 

to further constrain the solution space. This new capacity mix is then again passed on to the SP and the 

algorithm continues. If the solution is within the predefined cost tolerance (in this article 0.0001), the 

algorithm converges with the optimal solution.  

 

3 Inputs, Scenario Definitions and Results 

Input Assumptions 

As mentioned earlier, this article addresses two different effects. First, the different investment 

decisions for the three time resolution cases are analyzed, and second, the impact of a high wind 

penetration on optimal capacity expansion and dispatch is compared to a case without additional wind 

power growth. In all instances, the model results presented here loosely simulate the power system in 

Texas (ERCOT, in particular), home to the largest wind power market in the United States.  Except for 

the quantity of wind power deployed (which is input exogenously, and varies based on the two 

scenarios), all other inputs remain the same in the model results that follow.  

Fuel prices and generation investment costs are based on EIA (2010a), whereas CO2 price assumptions 

are based on Synapse (2008) (see Tab. 1 and Tab 2).  Because it impacts wholesale power prices and 

wind energy curtailment decisions, an assumption for the $-per-kWh level of policy support offered to 

wind power plants is required. Based on the current production tax credit (PTC) for wind energy in the 

United States and on renewable energy certificate prices estimated by EIA (2007) to be needed to meet 

a possible future renewable portfolio standard (RPS), an incremental wind support payment of 

$30/MWh is assumed now and RPS certificate prices of up to $18.2/MWh in future years.    



Tab. 1: Assumed Variable Cost Input Parameters 

 

Source: EIA (2010a), EIA (2007), Synapse (2008). 

Assumed investment costs for the five alternative generation unit types considered by THEA are 

presented in Tab. 2 (wind is not included here, as wind power capacity is exogenously input into THEA 

without consideration of its costs). The “superpeaker” unit type is intended to reflect generation units 

that are only utilized in very few hours per year. In the modeling presented here, this unit is assumed 

to have the  attributes of an oil turbine, though in practice, the services provided by these plants could 

be met with load shedding, demand-response programs, diesel generating sets, gas combustion 

turbines, or other options.  Other generation options considered in THEA are nuclear, coal, combined-

cycle gas turbines (CCGT), and open-cycle gas turbines (OCGT). 

Tab. 2: Assumed Power Plant Investment Costs 

 

Source: EIA (2010a). 

Fig. 1 shows the amount of incumbent generation capacity that is still available in 2030. With the 

exception of wind and hydro, the generating capacities that are required to meet the residual demand 

are added endogenously. The underlying lifetime assumptions for existing technologies are 50 years 

for nuclear plants, 40 to 50 years for coal plants, 30 to 40 years for CCGTs, 25 to 40 years for OCGTs 

and 40 years for the “superpeakers”. 

2008 2015 2020 2025 2030
Nuclear [$/mmBtu] 0.4 0.4 0.4 0.4 0.4
Coal [$/mmBtu] 2.2 2.1 2.1 2.1 2.1
Gas [$/mmBtu] 8.9 6.3 6.6 7.0 8.0
Oil [$/barrel] 99.6 94.5 108.3 115.1 123.5
CO2 [$/t CO2] 0.0 19.5 30.8 42.1 53.4
Wind support [$/MWh] 30.0 3.9 18.2 18.2 18.2

[$/kW]
Nuclear 3,820
Coal 2,223
CCGT 968
OCGT 648
Superpeaker 500



Fig. 2: Incumbent Generation Capacities 

 

Source: own calculations, based on ERCOT (2010a) and EIA (2010b). 

Overall annual electricity demand is assumed to increase from 312 TWh in 2008 to 427 TWh in 2030, 

which is derived from the estimated increase in peak load provided in ERCOT (2010a). The overall 

temporal load pattern is assumed to remain constant throughout the modeling period (ERCOT, 2010b).  

In the high-wind scenario, the wind share is assumed to increase from 4.8 % in 2008 to 25 % in 2030, 

while in the reference scenario wind generation is kept constant at 4.8%. Since much of the new wind 

power deployment in the high-wind scenario is likely to occur in the western zone of the ERCOT 

market, away from major load centers, additional transmission capacity would be needed to serve load.  

Though THEA does not directly address transmission issues, it is assumed in the present analysis that 

new transmission is built such that in 98% of the time all wind generation is able to serve load, while 

during the remaining 2% curtailment is applied based on transmission limitations. This approach is 

consistent with ERCOT 2006), and follows the reasoning that optimal (least-cost) transmission 

expansion for wind will not necessarily seek to deliver each and every unit of wind electricity to load.  
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The initial difference in temporal resolution can be observed in Fig. 3, which shows the load duration 

curves for the two wind penetration scenarios under  the different time slice approaches (the load 

duration curve for the low-wind reference case and high-wind base case are equivalent, so the only 

variation in the load durtation curves comes in their temporal resolution; the residential load duration 

curves of the low-wind and high-wind cases do differ, and Fig. 3 only presents the latter).3 On first 

sight, even the load duration curve under the very low resolution case with only 16 time slices matches 

the 8760 h case surprisingly well. The differences between the three temporal resolutions are most 

obvious at both ends of the curves, but for load duration curves, are not substantial.  

Fig. 3: Load and residual load duration curves for three temporal resolution cases 

 

Source: own calculation based on ERCOT (2010b).  

Since the conventional power system does not have to meet the full load, but only the residual load, 

Fig. 3 also highlights the three different residual load duration curves for the high wind scenario. As 

shown, the deviations between the three temporal-resolution cases increase with higher wind power 

                                                           
3 This should be understood as one possible way to segment the time slices. This example changes if e.g. 
different days are selected as type-days. The approaches applied here follow dena (2005) for the type-day 
approach and NREL (2008) for the 16 time slice approach. 
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penetration. In addition to the stronger deviations, which are especially observable at both ends of the 

curves, the slope of the duration curves differ also to a higher degree compared to the overall load 

duration curves. In sum, reducing temporal resolution does not - visually – have a significant impact 

on the load (or residual load) curve when variable wind generation is low. At a 25% wind energy 

penetration level, however, the residual load curve varies substantially among the three temporal 

resolution cases presented in Fig. 3.   

 

Model Results 

Optimal capacity expansion 

Model results for total generation capacity in 2030, by unit type, under both scenarios and all three 

temporal-resolution are presented in Fig. 4. In the low wind scenario, the main difference in generation 

capacity among the different temporal resolutions comes from different assumed peak loads. This is a 

direct result of the observed difference in the left-hand-side of the load duration curves shown in Fig 2, 

where one can see substantial differences in peak loads depending on the temporal resolution used. 

The higher the temporal resolution, the more effective the model is in capturing real peak load 

requirements, leading to greater quantities of peaking unit capacity (i.e., the capacity of 

“superpeakers” and the OCGTs increase as temporal resolution increases). When it comes to the 

remaining capacities, however, there are only slight differences among the three resolution cases in 

terms of nuclear, coal, and CCGT capacity.4  Even the 16 time-slice low resolution case shows more 

or less the same capacity development as the high resolution case outside of the need for peaking 

capacity to meet hourly peak loads. Adding a “superpeak” time slice, as applied in the ReEDS model, 

is likely a  sufficient solution to close this gap, under the low wind scenario. 

                                                           
4 Note that, for all calculated scenarios, no new coal power plants are found to be built, given the CO2 price 
assumptions shown in Tab. 1. 



Fig. 4: Capacity in 2030 for both scenarios and three temporal resolution cases 

 

Source: own calculations. 

Optimal capacity expansion is substantially different in the high-wind penetration scenario, and also 

varies significantly depending on the temporal resolution.  Under all three temporal resolutions, the 

peak capacity need under the high-wind scenario is substantially greater than under the low-

penetration scenario, a capacity need that is met by substantially greater quantities of super-peakers 

and OCGTs, but correspondingly lower amounts of nuclear generation capacity. This shift towards 

greater quantities of peaking generation and lower quantities of baseload generation is consistent with 

other analyses of high-penetration wind energy scenarios (e.g. dena, 2005). 

In comparison to the low-wind scenario, the remaining capacity mix under the high-wind scenario also 

varies substantially depending on the degree of temporal resolution. In addition to the greater 

investments in OCGTs, the higher temporal-resolution cases also result in greater investments in 

combined cycle gas turbines (CCGTs). When it comes to base-load general investments, even though 

the low resolution case has in absolute terms lower peak capacity requirements, the base-load 

investments are found to be higher, even in absolute terms, than in the high resolution cases. In effect, 

as temporal resolution increases under a high-wind penetration scenario, the remaining conventional 
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generation mix tends to shift towards intermediate and peaking plants that can cost-effectively meet 

the decreased capacity factor and flexiblity needs of a high-wind scenario, while shifting away from 

conventional baseload units. 

One additional outcome of this scenario comparison is the implicit capacity credit for the additional 

wind capacity. In 2030, the wind capacity difference between the low- and the high-wind scenarios is 

32 GW. The difference in conventional capacity between the scenarios in the low resolution case is 3 

GW, in the medium resolution case 2 GW, and in the high resolution case 1.4 GW, which equals a 

capacity credit of 9.3 % in the low, 6.4 % in the medium and 4.3 % in the high resolution case. Using 

lower temporal resolutions is therefore found to overstate the capacity value of wind energy. 

In sum, these results demonstrate that higher temporal resolution plays a significantly more important 

role in high wind energy penetration scenarios than in traditional energy sector modeling. Scenarios 

with relatively low amount of wind energy, on the other hand, may be modeled with lower temporal 

resolutions without sacrificing the accuracy of the results substantially, especially if peak load 

requirements are accurately modeled.   

 

Generation dispatch 

Model results for generation utilization in 2030, by unit type, under both scenarios and all three 

temporal-resolution cases are presented in Fig 4. The generation share in the low wind scenario 

follows the observations above with respect to investment decisions: relatively modest differences 

among the temporal resolution cases. Some differences, however, are observable. Specifically, 

generation from nuclear plants is somewhat higher in the low resolution case, while generation from 

CCGTs is higher in the high resolution case. In addition, there is a small amount of generation from 

OCGTs in the higher resolution cases and virtually none in the low resolution case. Even with low 

levels of wind generation, it is clear that lower temporal resolution models are unable to fully capture 

the need for peaking and intermediate generation in the power sector. 

 



Fig. 5: Generation shares in 2030 for both scenarios and three temporal resolution cases 

 

Source: own calculations. 

As with the optimal capacity mix, these differences become much more striking under the high-

penetration wind energy scenario. Regardless of the degree of temporal resolution, high penetrations 

of wind energy are found to increase the supply of peaking and intermediate generation, and reduce 

the need for baseload generation.  Perhaps more importantly from a modeling perspective, however, is 

that temporal resolution has a dramatic impact on model results. In particular, the generation mix 

becomes much more peak oriented in the high resolution cases: there is more generation from OCGTs,  

CCGTs and even the “superpeaker” category has up to 21 generation hours, whereas baseload nuclear 

generation decreases substantially.  As with capacity expansion, these results demonstrate that higher 

temporal resolution plays a significantly more important role in high wind energy penetration 

scenarios than in traditional energy sector modeling. These differences are, in part, simply an outcome 

of the different investment patterns, but as can be seen in the cases of OCGTs, differences are also due 

to dispatch decisions.  
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Wholesale power prices 

Differences in capacity expansion and generation mix are also reflected in estimated annual average 

wholesale power market prices, as shown in Fig. 6. The high wind scenarios tend to have lower 

average wholesale prices than the low wind scenarios, while higher temporal resolutions also tend to 

result in lower overall average wholesale prices.   

Fig. 6: Average wholesale prices in both scenarios and three temporal resolution cases in 2030 

 

Source: own calculations. 

During hours of high wind power generation, wholesale power prices are driven below the average 

price level, resulting in an overall reduction in average wholesale power prices under the high-wind 

penetration scenario, as shown in Fig. 6.  Nevertheless, a second trend operates in the opposite 

direction: under the high-wind scenario, a greater amount of intermediate and peaking generation is 

used, generation that requires higher wholesale prices to support the variable costs of those units 

relative to baseload plants. Since the average prices shown in Fig. 6 present only the average effects, 

thereby masking these influences, Fig. 7 depicts the wholesale price behavior in form of price duration 

curves, where both of the above-mentioned trends are observable. For the purpose of Fig. 7, only the 

highest temporal-resolution (8760 h) cases are compared. 
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Fig. 7: Price duration curves for both 8760 scenarios 

 

Source: own calculations. 

 

As shown, the price duration curve of the low wind scenario is most of the time above the one from 

the high wind scenario, especially when prices are relatively low. During very high-priced periods, 

however, the opposite trend is observable.  Both effects are more-readily seen in Fig. 8, which focuses 

on the particularly high- and low- priced portions of the price duration curve. 
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Fig. 8: Zoom into the highest price (left) and lowest price (right) areas 

 

Source: own calculations. 

During the periods of high wholesale power prices, the price duration curve of the high wind scenario 

is above the one from the low wind scenario, consistent with the higher generation share from peaking 

and intermediate units in this scenario and the lower use of baseload units. Though these difference in 

the high-price periods are relatively modest, the difference in the lowest price periods are more 

apparent. In particular, the price duration curve in the high wind scenario drops to low and even 

negative prices far more frequently than in the low wind scenario.  The low, but positive plateau 

represents the hours in which nuclear generation represents the marginal unit, whereas negative prices 

are present because wind generators are assumed to receive a $18.2/MWh support payment, so would 

be willing to generate at wholesale prices at or above $-18.2/MWh. As soon as the power price drops 

below this $-18.2/MWh level, wind generation is  curtailed - this negative price level is therefore 

observable as soon as wind generation is curtailed, which of course happens more often in the high 

wind scenario.   

 

Wholesale market value of wind energy 

One additional metric that shows the advantage of high temporal resolution modeling and that 

naturally follows the price discussion is the wholesale market value of wind energy, relative to average 

annual wholesale prices (Fig 8). The general pattern over time shows that, after the transmission 

restriction is assumed to be somewhat relaxed from 2015 onwards, the wholesale market value of wind 



energy increases until higher wind penetration levels are reached, at which point the market value of 

wind drops for the reasons discussed earlier. This pattern is observable in all cases, regardless of the 

degree of temporal resolution, and can also be seen when comparing the low- and high-wind cases in 

Fig 8. In addition,  the higher the temporal resolution, the lower the estimated wholesale value of wind 

energy since more extreme events, which are only present in the high resolution cases, have 

particularly strong price effects. As a result, in the low resolution case, the wholesale market value of 

wind is only slightly below the average wholesale price, whereas the higher resolution cases show a 

stronger deviation between the wholesale value of wind and average wholesale prices.  

 

Fig. 9: Wind energy wholesale value for both scenarios and three temporal resolution cases, relative to average 

wholesale prices 

 

Source: own calculations.  
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Wind energy curtailment 

Fig 9 presents model results for wind energy curtailment. Naturally, the higher wind penetration 

scenario also shows higher relative curtailment levels. In addition, since the extreme events only show 

up in the higher resolution cases, curtailment is found to increase with temporal resolution. This 

finding, along with the previous finding on the wholesale market value of wind energy, underline the 

conclusion that dispatch behavior is best matched with high temporal resolution.  

 

Fig. 10: Relative Curtailment development in both scenarios and three temporal resolution cases 

 

Source: own calculations. 
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4 Conclusion 

The modeling results presented in this paper demonstrate the importance of temporal resolution in 

evaluating high wind penetrations.  The low wind scenarios show relatively small capacity investment 

deviations when moving from high to low temporal resolution. The corresponding results for the high 

wind scenarios, on the other hand, differ significantly with temporal resolution. More specifically, 

under high wind scenarios, lower temporal resolutions are found to result in far-higher levels of 

baseload capacity (e.g. nuclear) than are found to be optimal with more accurate modeling. The higher 

the temporal resolution, the lower is the base load capacity.  Consequently, models with low temporal 

resolution may substantially overstate the amount of baseload generation that would be economically 

optimal under a high-penetration wind energy scenario, while understating the need for peaking and 

intermediate generation units.  

When it comes to the dispatch part of the model, temporal resolution is also found to play an important 

role, especially under high penetration wind energy scenarios. Again, the higher the temporal 

resolution, the greater the reliance on peaking and intermediate generation supply and the lower the 

contribution of baseload generation. Moreover, lower probability power system events are only 

captured when temporal resolution is high, so notable differences in the market value of wind and 

wind energy curtailment are observed when temporal resolution changes. The market value of wind as 

well as the curtailment behavior is best captured by high temporal resolution: models with low 

temporal resolution will tend to overstate the market value of wind, and understate the prevalence of 

wind curtailment.  

An important implication of these results is the need to model high-wind scenarios with capacity 

expansion and dispatch models with high temporal resolutions. Where high temporal resolutions are 

not possible due to computing constraints, correction factors might instead be applied. Based on the 

results presented here, those corrections would ideally have the effect of reducing baseload (and 

increasing peaking and intermediate) capacity and generation with the level of wind energy supply, 

while also increasing the aggregate level of conventional capacity to meet peak system loads. In 

addition, in the modeling presented in this paper, wind power development was established 



exogenously, and the value of that wind generation was found to decrease with penetration.  Though 

the degree of that decrease in value will depend in large measure on the composition and flexibility of 

the conventional generation mix, and will be highly system specific, correction factors to account for 

the decrease in market value of wind with penetration are needed if low temporal resolution models 

are used.  

In conclusion, the additional requirements on the conventional power market with high wind 

penetration are also reflected in additional requirements for power sector dispatch and capacity 

expansion modeling. In general, the higher the wind penetration, the more important is the temporal 

resolution in simultaneous dispatch and investment decision. Fortunately, progress in computational 

power enables modelers to increase the degree of accuracy in the models, and increase temporal 

resolution. Although modeling at an hourly time step is not possible for all applications, stepwise 

progress seems appropriate, with correction factors applied where necessary.  
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